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The .~naxinzuin principle least-squares nonlinear filter is applied for sequen- 
tially estimating the states of a ballistic vehicle in a partially unknown atmos- 
phere, given noisy linear or nonlinear observations on all states. Methods for 
reducing the filter's dimensionality and n~athen~atical complexity are developed. 
An ultimate sinlplification of the filter scheme is obtained. Tracking performance 
and reliability of the simplified filter schenles are tested by extensive digital 
sinlulation studies employing the continuous formulation of the filter. The simpli- 
fied filters consistently exhibit better tracking performance than the full filter 
schemes. Typically, the simplified filters operate with a transient time of 0.5-2.0 s. 

The relative errors the simplified filters provide for the estimated states are 
approximately 10% or less of the relative errors in the measured states. Further- 
more, the simplified filters provide reliable tracking even for 100% or more 
mismatch of the values of the atmospheric parameters. The ultimately simplified 
filter, which is a constant-gain diagonal filter, can be mechanized by approxi- 
mately 95% reduction of the mathematical operations needed to mechanize the 
full filter. 
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Sequential Estimation of States of a Ballistic Vehicle 
in an Imperfectly Known Atmosphere 

I. Introduction 

A. Terminal Guidance Logic and Sequential 
Estimation 

The basic logical functions of a guidance system de- 
signed to soft-land a vehicle on the surface of a distant 
planet may conveniently be organized in three major 
categories : 

(1) Detel-mining the current position and motion of 
the vehicle with respect to the guidance goal. 

(2 )  Predicting the position and motion of the vehicle 
at some future time. 

(3) Deciding what control actions are required and 
when to apply then1 in order to achieve the termi- 
nal goal. 

Evidently, these operations must be performed by a 
logical subsystem, the essential element of which is a 
digital computer. The computer-accepting noisy data 
on the position and motion of the vehicle-then deter- 
mines the vehicle's current state, predicts its future state, 
and makes decisions on necessary control actions to 
achieve the guidance goal. 

This study is essentially concerned with the first 
guidance system function-that is, determining the cur- 
rent state of the vehicle using a digital conlputer as the 
basic tool. In particular, a ballistic vehicle flying in an 
inlperfectly known atmosphere is considered. As a nu- 
merical example, the terminal phase of a soft-landing 
mission to Mars is selected. 

In general, it is assumed that the current state of the 
vehicle would not be known with the desired accuracy 
for these reasons : 

(1) The initial conditions for integrating the differen- 
tial equations governing the vehicle's time history 
are known only imprecisely. 

( 2 )  The differential equations describing the vehicle's 
time behavior form an inlperfect nlathenlatical 
representation of the vehicle's true time behavior; 
the mathematical representation of the atmospheric 
forces (drag and wind) is certainly imperfect. 

(3) The measurements are contaminated by inevitable 
noise of different origin. 

Thus, a coillputaiional scheme must be developed by 
which the current state of the vehicle can be estinlated 
in some optimal sense and in real-time, givefi (1) noisy 
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measure~llents on the state of the vehicle, and (2) an 
imperfect dynamic description of the time behavior of 
the vehicle. 

Following nlodern concepts in the theory of estima- 
tion, the estimation procedure will be regarded as a 
filtering problem. Thus, the estiination logic, or scheme, 
is in general a dynamic time-varying nluItidinlensiona1 
filter. The filter's input is a time sequence of noisy ob- 
servations of variables related to the state. The filter 
uses the inconling observations in a proper way to pro- 
duce up-to-date "best estimates" on the state variables 
by solving the equations of inotion sequentially. The 
filter's output is then the state estimated in some optimal 
sense in real-time. 

B. Nonlinear Filtering and the Terminal Guidance 
Problem 

The ternlinal guidance problem of soft landing on an 
atmosphere-bearing planet involves nonlinear mathe- 
illatics since (1) the state of the vehicle is governed by 
ordinary nonlinear diferential equations, and (2)  the 
measurements and the state variables are usually related 
to each other by nonlinear algebraic equations. There- 
fore, the nonlinear character of the ternlinal guidance 
problem should naturally lead to the application of non- 
linear filtering. The conventional mathematical develop- 
ment of a nonlinear guidance problem, however, is based 
on the nlotions of linear perturbation techniques. These 
techniques allow the application of the powerful tools 
of linear analysis to the guidance problem. For the esti- 
mation part of the guidance problem, this would imply 
a possible direct application of the nlinimum variance 
(Kalman-Bucy) linear filter (Ref. 1) to producing best 
sequential estimates on the states of the vehicle. The 
application of linear perturbation techniques, however, 
is conditioned on an inherent requirement: the deter- 
n~ination of a reference state. If the coordinate deviations 
from the reference state are outside the range of linearity, 
that is, if the effects of higher-order terms are not arbi- 
trarily small anymore, the reference state has to be 
redetermined. Updating the reference state for improved 
linearizations, however, may not be feasible during the 
terminal phase of a planetary soft-landing mission in an 
atnlosphere because of the partially unknown and unpre- 
dictable atmospheric conditions (atmospheric density, 
wind, etc.) and because of the short terminal maneuver 
time. The procedure of updating the reference state 
might e~~entually be eased by taking the estimated state 
as the reference state when it is reasonable to assume 
that the current best estimate is sufficiently close to the 

tsue state (Ref. 2). The application of the minimum 
variance linear filter to a nonlinear problem, however, 
remains an approximation. 

In this report a nonlinear filter scheme is applied for 
estiination purposes. It is true that any hitherto known 
nonlinear filter is also based on approxinlations. The 
approxinlations involved in deriving the nonlinear filter 
schemes, however, are of a different nlathematical sig- 
nificance than that of linearizing the systenl equations. 
This can easily be seen by recognizing that the known 
nonlinear filters (Refs. 3-9) son~ehow reflect upon the 
nonlinearities of a given problem by incorporating also 
the second derivatives of the system or the observation 
equations into the filter dynamics. 

This general statement must be modified for the non- 
linear filter derived by Cox (Ref. 3). This filter is essen- 
tially equivalent to using linear filtering about the 
conlputed mean, or, alternatively, it is equivalent to the 
minimum variance filter for a linear expansion of the 
system's nonlinearities. The known computational studies 
on the perforlnance of nonlinear filters indicate (Ref. 10) 
that any nonlinear filter has a better response for the 
nonlinear estimation problems than a strictly linear one. 

Among the known nonlinear filters, the maximum 
principle least-squares (MPLS) nonlinear filter (Ref. 4) 
is employed in this study for estimating the states of 
a ballistic vehicle flying in a partially unknown atmo- 
spheric environment. The particularly appealing feature 
of the MPLS nonlinear filter is the filter's deterministic 
derivation which does not require the specification or 
con~putation of quantitative probabilities. The satisfac- 
tory performance of the MPLS nonlinear filter is merely 
based upon a judicious choice of the relative weightings 
for the residual errors. 

The MPLS nonlinear filter, as compared to the other 
known nonlinear filters, introduces the second derivatives 
only of the observation equations into the filter's dynam- 
ics, leaving the second derivatives of the system equations 
out of the filter scheme. For the problem under consid- 
eration, this yields a simpler filter structure as we11 as a 
more proper estimation scheme than any other known 
nonlinear filter would give. The estimation scheme pro- 
vided by the MPLS nonlinear filter is "more proper" for 
the proble~n under consideration in the sense that the 
observations necessarily should have more relative im- 
portance in the estimation scheme than the system 
equations because of the imperfect knowledge on the 
acting atmospheric forces (drag, wind, etc.). 
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C. Purpose and Approach mination of valid statistical data on the acting distur- . . 

During the termillal phase of a soft-landing mission 
to a distant planet the possibility of earth-vehicle com- 
munication is excluded. This necessitates that the logical 
operations of the tern~illai guidance system nlust rely 
entirely upon vehicleborne measurements and vehicle- 
borne data analysis. I t  is required, therefore, that all 
terminal guidance functions be acconlplished by on-board 
self-contained equipment. This basic requirenlent also 
implies that the conlputations related to the logical oper- 
ations of the terminal guidance system nlust not be too - 

complex to be executed by a special-purpose on-board 
computer having limited weight and conlputation capac- 
ity. The particular objective of this study regarding the 
development of a realizable sequential estinlation scheme 
is motivated by that practical constraint. Thus, this re- 
port is essentially a study on well-defined and useful 
simplifications of the MPLS nonlinear filter scheme 
applied to sequentially estimating the states of a ballistic 
vehicle flying in a partially unknown planetary 
atmosphere. 

To test the feasibility of the derived simplified MPLS 
nonlinear filter scheme, extensive nunlerical experimen- 
tations were carried out on a digital computer. The 
ultimate justification for the approximations and sim- 
plifications employed in the present study is essentially 
based on digital simulations. Theoretical considerations 
are used only for motivating the simplifications and for 
substantiating the obtained results. 

The performance of realizable nonlinear filters can 
ultimately be judged probably only by application, as 
it is also indicated by several other researchers on non- 
linear filtering (Ref. 11). Therefore, the application itself 
also enters into the analysis and design of the nonlinear 

- 
bances is in itself a difficult theoretical and practical 
problem. For estinlation purposes, the ~liinin~izatiorl of 
the integral of the weighted squared residual errors 
(estimation errors) is used.l The sequential nature of the 
estinlation problenl is brought out by applying the 
theory of invariant imbedding on the canonical equa- 
tions iornlally obtained using the Pontryagin nlaxiinum 
principle. The derived MPLS nonlinear filter equations 
are first-order approxiinations to a nonlinear partial differ- 
ential equation resulting from the invariant imbedding2, 

A. Nonlinear Filter Equations 

For quick reference the general MPLS nonlinear filter 
equations are sumnlarized below in a convenient form. 

where 

7' = running estinlation time 
A 
x = best estimate of the TZ-dimensional 

state vector (best in the least-squares 
sense ) 

A 
f(x,T) = n-vector function; system equations in 

for111 of first-order ordinary differential 
equations for the state vector x with 
respect to time t. 

filter. This implies that the approxin~ations and simplifi- A F(x,T) = (g) = the Jacobian function matrix of f 
cations applied in the present study should primarily 
be viewed in relation to the particular problem in ques- F = the transpose of F 
tion. Nevertheless, these sin~plifications and the related 
results nlay be indicative regarding other particular II($,T) = m-vector function; the observation vec- 
problems, too. tor relating the measurement vector 

y ( T )  to the state vector 4; m < n 

la. The Maximum Principle Least-Squares = the transpose of the Jacobian func- 

Nonlinear Fiiter tion matrix of 12 

The MpLS filter is derived ( ~ ~ f ,  4) using deterministic 'It has to be notecl that the application of the least-squares criterion 
for estimation purposes will not necessarily be the best one if \ alid techniques. Thus, no probabilistic assu'll~tions Or 
btatistical data on tile acting ~iStrll.bRnCPS w e  at  hand, 

pu'at'ons 're required the "leasurelnent errors 
2~~ a matter of fact, h i s  nonlinear partial djEermtinl ewai ion call 

and the unknown inputs to the sYstelll+ This fact is of also be  obtained immediately using the dynamic programming 
considerable importance since in many cases the deter- approach. 
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G ( ~ , T )  = - = the Jacobian function matrix of g (El) 
Q = quasi-norm factor; positive semi- 

definite m * m sylnnletric matrix re- 
Iated to the observation vector 

R = %W-I = the inverse of the ixatrix W 

W = quasi-nonn factor; positive definite 
n. * n symnletric matrix related to the 
system equations 

P = n * n syn~metric matrix; gain matrix; 
(approximate covariance matrix) 

The dynamic structure of the MPLS nonlinear filter, 
in the form of a functional flow diagram, is shown in 
Fig. 1. 

A close inspection of the structure of Eqs. (1-3) reveals 
that the sequential estimation of states through the 
MPLS nonlinear filter scheme is, in effect, acconlplished 
by fitting solutions of the equations of motion to the 
measured data in a weighted least-squares sense. Further- 
more, the following features have to be noted regarding 
the MPLS nonlinear filter scheme. 

B. General Features of the Filter Equations 

(1) This scheme contains n(n + 3)/2 coupled, ordinary 
nonlinear differential equations where n is the di- 
mensionality of the system. 

(2) The state estimator equations, Eq. (I), are in 
proper form since, if the current observation 
should happen to agree precisely with the esti- 
mated observable, the fact that observation took 
place would have no effect on the rate of change 
of the estimate. 

(3) In general, the observations y i  appear as forcing 
terms in the state estimator equations as well as 
in the gain equations. Furthermore, the gain equa- 
tions will also contain the second derivative of 
the observation vector h. 

(4) When the observation vector h is a linear one, the 
gain equations will not contain the observations 
yi as forcing terms since there is no second deriv- 
ative of the observation vector. The gain equa- 
tions read then 

(5) The relative weightings, Q and TV (or R),  for the 
residual errors must be specified. Assigning rela- 
tive weights rcplaccs the requirement of specify- 
ing the mean and covariance of the noise terms 
when a probabilistic alsnroach is employed. 

(6) When solving or implementing the differential 
equations of the MPLS nonlinear filter scheme, 
initial values must be assigned for 2 and P. It has 
to be noted also that P must be a positive definite 
matrix. 

C. Digital Simulation of the Filter 

In general, there is no way to investigate the tracking 
performance and stability of the MPLS nonlinear filter 
other than by simulation studies for given cases or for 
given class of cases. The procedure of digital simulation 
of the MPLS nonlinear filter is schematically depicted 
in Fig. 2. Thus, the digital simulation of this filter con- 
tains the following phases: 

(1) The trajectories of the dynamically perturbed sys- 
tem are generated by solving the system equations 
for given initial conditions. 

(2) Noisy observations are generated by corrupting 
the output data of phase 1 with suitaoly modeled 
observation noise. 

(3) The noisy observations, generated through phase 2, 
are used as input to the relevant MPLS nonlinear 
filter equations which then have to be solved for 
assumed initial values for 2 and P and with selected 
values for the weighting matrices Q and R. 

The main problems in studying the behavior of the 
MPLS nonlinear filter are to determine the appropriate 
weighting matrices Q and R as well as to detelmine the 
proper initiation for integrating the filter equations. In 
general, these problems must be solved by trial and 
error using the following obvious criteria as guides to 
evaluate the estimated trajectories. The estimated tra- 
jectories must have simultaneously: 

(1) Short transient parts toward the true trajectories. 

(2) Smooth and stable behavior along the true tra- 
jectories. 

( 3 )  Insensitivity for a given class of wrong initial 
estimates on the states and for a given class of 
perturbations. 

The numerical algorithms empIoyed in the digital 
simulations must also be accounted for in a proper way 
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Fig. 1 .  Functional flow diagram for the maximum principle least-squares nonlinear filter 
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DYNAMIC INITIAL 
NOISE CONDITIONS 

OBSERVATION INITIAL 
NOISE C O N  Dl TI O N  S 

WEIGHTING 
FACTORS 

Fig. 2. Scheme of digital simulation of the filter equations 

when studying the tracking performance and stability 
of the MPLS nonlinear filter in its continuous formula- 
tion. The numerical algorithms do necessarily interfere 
with the tracking performance and stability of any non- 
linear filter. 

Ill. Simplifications of the Maximum Principle 
Least-Squares Nonlinear Filter Dynamics 

When dealing with sequential estimation of states of 
multivariable nonlinear systems, the gain equations 
of the MPLS nonlinear filter-depending on the dynamic 
description and on the dimensionality of the system- 
attain an increasingly complex Riccati structure. From a 
solution and mechanization point of view, therefore, it 
may be imperative to simplify the dynamics of the full 
MPLS nonlinear filter in a well-defined manner. (Note 
that the full MPLS nonlinear filter scheme itself is but 
an approximation.) 

Proposition 1 may be justified heuristically by adopt- 
ing an information-transmission point of view regarding 
the structure of the MPLS nonlinear filter scheme. The 
diagonal gain equations transmit direct contributions 
from the measurements to estimating the state vector. 
Direct contribution means, for instance, the contribution 
from velocity measurements to estimating velocity. On 
the other hand, the oE-diagonal gain equations transmit 
indirect or  cross-correlated contributions from the 
measurements to estimating the state vector. Indirect 
contribution means the contribution from velocity mea- 
surements to estimating position or, inversely, the con- 
tribution from position measurements to estimating 
velocity. 

I t  is worthwhile to note that the contribution from 
velocity measurements to estimating position, and the 
contribution from position measurements to estimating 
velocity, may be transmitted by the same gain term 
because of the symmetry of the gain matrix. 

A. Propositions Taking into account these structural characteristics of 

The following propositions are set forth (Ref. 12) for the MPLS nonlinear filter, it may be true that the full 

simplifying the dynamics of the MPLS nonlinear filter Operates in a physically and re- 

scheme. dundant manner. But this information-transmission point 
of view on the filter's structure, as briefly outlined above, 

(1) Proposition I :  All but the diagonal gain equations warrants further investigation. 
in the MPLS nonlinear filter should be disre- 
garded when all state variables are available for B. Consequences 

measurement. Proposition 1 implies that 
(2) Propositio~z 2: If the diagonal gain equations of the 

MPLS nonlinear filter settle down on constant 
values, these values should be applied as constant 
gains in the diagonally reduced filter from the when the proposed diagonal time-varying filter scheme 
initiation of sequential estimation, thus omitting is employed to estimate the state vector. The approxi- 
the on-line solution or mechanization of all gain mation given by Eq. (5)  amounts to choosing the off- 
equations in the filter. diagonal elements of the weighting matrix R (or W) 
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formally in the ,following way: 

where the terms a j i  are the relevant elements of the 
Jacobians. The computations involved in Eq. (6) need 
not be performed to get an operating diagonal time- 
varying filter. The specification of Eq. (6) is merely a 
formal one. Nevertheless, it is necessary to specify 
Eq. (6) formally to get balance in the off-diagonal gain 
equations which, in general, also contain the diagonal 
elements of the gain matrix. At the same time, Eq. (6) 
also provides insight into the simplifications afforded by 
proposition 1. In view of Eq. (6), the role of the Rii 
terms in the simplified diagonal gain equations may also 
be  reinterpreted. Thus, the Rii terms tend also to com- 
pensate for the cancelled off-diagonal terms in the 
simplified diagonal gain equations. 

Proposition 1 introduces considerable mathematical 
simplifications into the structure of the full MPLS non- 

It  should be noted that Eq. (7) represents the ulti- 
mate simplifying reduction of the MPLS nonlinear filter 
scheme. The dimensionality of this diagonal constant- 
gain filter is n, which is the same as the dimensionality 
of the system in question. Moreover, in this ultimately 
simplified MPLS nonlinear filter scheme there is only 
one term which is being added to each system equation. 
These additional single terms alone will take care of the 
running observations when Eq. (7) is solved sequentially 
to estimate the current value of the state vector. 

The ultimate justification for the simplifications of the 
MPLS nonlinear filter defined by propositions 1 and 2 
must be based on numerical studies of given problems. 
The subsequent sections of this document are devoted 
to numerical studies on the tracking performance and 
stability of the simplified MPLS nonlinear filters as 
applied to sequential estimation of states of a ballistic 
vehicle flying in an imperfectly known atmosphere. 

C. Free Manipulations in the Simulation Procedure - 
linear filter scheme. First, the dimensionality of the filter 
is being reduced to 2n from the original n(n + 3)/2 The formal procedure of digital simulation of the 

dimensions. Moreover, the dynamics of the remaining simplified MPLS nonlinear filters-the diagonal time- 

filter equations are being simplified, too, because the varying and the diagonal constant-gain filters-is the 

number of terms has been reduced in each remaining same as that outlined previously for the full filter, de- 

filter equation. picted in Fig. 2. 

Proposition 2 yields the following simplified MPLS 
nonlinear filter scheme: 

The symbols used in Eq. (7) are defined as in Sec- 
tion 11-A (except for P* which is a constant, diagonal 
n * n  matrix, the elements of which are the settled-down 
values of the diagonal P equations in the corresponding 
diagonally reduced filter). 

The dynamic structure of the constant-gain diagonal 
filter is shown in Fig. 3. Comparison of Figs. 3 and 1 
will aid in understanding the operational simplifications 
associated with the constant-gain diagonal filter scheme. 

The motivation for proposition 2 and for the resulting 
diagonal constant gain filter is the existence of the 
settled-down values of the diagonal P equations in 
the diagonally reduced filter. 

In  general, there are three elements which can be 
chosen freely (but judiciously) when studying the track- 
ing performance and stability of the simplified (as well 
as of the full) filters through digital simulation: (1) the 
initial conditions for 4 and P, (2) the noise model and 
unknown inputs, and (3) the weighting matrices. These 
three independent free accesses to the digitally simulated 
filters are separately emphasized in Fig. 2. 

IV. Time-Varying Diagonal Filter 

The system equations describing the drag-retarded 
planar motion of a gravity-.turn ballistic vehicle a t  the 
terminal phase of a soft-landing mission are derived in 
Appendix A. The vehicle is considered to be still in free 
fall; that is, no retrothrust is applied for braking. A linear 
and a nonlinear observation vector related to the vehicle's 
inotion are also specified in Appendix A. In specifying 
the observation vectors and deriving the MPLS nonlinear 
filter equations, it has been assumed that the sequential 
estimation problem is restricted to estimating altitude, 
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Fig. 3. Functional flow diagram for the maximum principle 
least-squares constant-gain diagonal nonlinear filter 

path angle, and velocity-the essential system variables 
from the point of view of the terminal guidance goal. 
The observation vectors are selected such that their 
dimensionality is the same as that of the state vector to 
be estimated (that is, all state variables are measured). 

The full MPLS nonlinear filter equations for the speci- 
fied linear and nonlinear observation vectors are derived 
in Appendixes B and C, respectively. The main difference 
between the two sets of filter equations is the role .of 
observations in the gain differential equations (the P I j  
equations). The observations appear as forcing terills in 
the P , j  equations for the nonlinear observations, while, 
in the case of the li ear observatioils they appear as R forcing terms only in x, (estimated mean) equations (and 
not at all in the PI,  equations). 

MPLS nonlinear filter scheme must be solved simul- 
taneously with the state estimator equations3 The initial 
conditions on the filter equations and the elements of 
the R matrix illust be specified when solving Eqs. (B-4) 
through (B-12) (Appendix B) and Eqs. (C-4) through 
(C-12) (Appendix C), respectively. The tracking per- 
formance and stability of the MPLS nonlinear filter 
depend mainly on the judicious choice of the initial 
conditions and of the R matrix, as noted previously. 

The solutions of the full MPLS nonlinear filter equa- 
tions for estimating altitude, path angle, and velocity 
are not presented here for each simulated case since the 
aim of this report is the study of the solutions of the sim- 
plified MPLS filter schemes as they are specified in the 
previous section. 

The gain 'Iifferentia1 however, are depend- T h i s  is in sharp contrast to the solution of the minimum variance 
ent on the estimated mean of the states in both cases. linear (Kalman-Bucy) filter equations where the gains can be pre- 
This implies that the gain differential equations of the computed. 
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A. Linear Observations 1 .  Znpttt data, In the digital simulation of the time- 
varying diagonal filter, given by Eqs. (8-13), the follow- 

According to proposition 1, defined by Eqs. (5)  and 
ing Bii values were applied: 

(6) ,  the time-varying diagonally reduced filter equations 
for sequentially estimating altitude, path angle, and 
velocity, given noisy linear observations on all states, 
becoine [from Eqs. (B-4) through (B-12) in Appendix B] : 

A A A A x1 = -x3 sin x, + 2P11 (y ,  - xl) (8) 

A 
h 4, = (2 - :) cos I;, + 2pZ2 (y, - x2) 

A A A A A x, = g sin x, - Kx; exp (-bx,) + 2P,, ( y ,  - x,) 

(10) 

f,, = -2P;, -4P,, ~ 4 ,  exp ( - bg,) + E,, (13) 

Comparing Eqs. (8-13) to those in Appendix B (B-4 
through B-12), it is seen that the time-varying diagonally 
reduced filter scheme has a much sinlpler structure than 
the full filter scheme. The new features of the time- 
varying diagonally reduced filter equations as conlpared 
to the full filter equations are the following: 

(1)  The filter scheme's dinlensionality is reduced from 
nine to six. 

(2) The terms in the diagonal filter equations are 
reduced by a factor of two. 

(3)  The diagonal gain differential equations are de- 
coupled from each other. 

(4)  There is only one gain term in each state estimator 
equation, Eqs. (&lo), which takes care of the 
running observations. 

(5)  The state-dependent coefficients of the linear terms 
in Eqs. (12) and (13) essentially are the second and 
third diagonal elements of the Jacobian of the 
system equations. [Note that the first diagonal ele- 
ment of that Jacobian, given by Eq. (B-3) of Appen- 
dix B, is zero; consequently, there is no linear term 
in the first gain equation, Eq. (ll).] 

(6)  The meaning of the diagonal ele~nents of the 
weighting matrix R is reinterpreted in the diag- 
onally reduced filter scheme (signified by a superior 
horizontal bar: Ri i ) .  

- - 
Rl, = 1, R,, = 5, R,, = 50 
- - 
R1, = 5, R,, = 10, K,, = 75 

ITl1 = 10, K,, = 15, R,, = loo 

The initial conditions on Pi were 

The estimated initial values of the state variables were 
2040% off to the "true" values. Typical true initial 
values were: 

x,(O) = 1.5-2.0 X 10"t 

x,(O) = 50-60 deg 

Dynamic noise and observation noise were modeled 
according to the expression 

where qi(t) are, for each t, statistically independent ran- 
dom variables, unifornlly distributed between [ + 1, - 11 
and ai are constants, adjusted to the assumed relative 
magnitude of the respective noise. In generating noise 
the following relative amplitudes were assumed: 

(1)  1030% dynamic noise. 

(2)  0.5-2.0% noise in altitude measurements. 

(3) 2.0-8.0% noise in path angle nleasurenlents. 

(4)  1.0--6.0% noise in velocity measurements. 

The fourth-order Runge-Kutta routine was en~ployed 
for integrating the filter differential equations. The inte- 
gration step size was 0.01 s. The physical parameters 
applied in the conlputations as well as the applied com- 
puter subroutines are listed in Appendix D. 

2. General results. The main results of the digital 
simulations of the time-varying diagonal filter for linear 
observations can be suinlnarized as follows. 

a. Trnckitzg perfor?nnnce and stability. In general, the 
tracking performance and stability of the simplified filter 
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equations are very good. A typical case is shown in the 
curves of Fig. 4 for a selected set of E , i .  After a very 
short transient time (-1.0 s), the simplified filter tracks 
the true trajectories smoothly. The amplitude of the low- 
frequency oscillations of the  estimated trajectories 
around the true trajectories is less than 10% of the rela- 
tive anlplitude of the measurement noise. 

I?. Initiatioia of the filtering process. The response of 
the simplified filter to the wrong initial conditions on the 
state variables is very satisfactory. As is clearly displayed 
in Fig. 4, the filter's tracking performance is very much 
insensitive to the wrong initial estinlates on the states. 

c. Ri i  value comparison. The laigla Rii values result 
in shorter transient parts for the estiillated trajectories 
than the lozo K i i  values, while the low Eli values yield 
smoother estimated trajectories than the high Ri; values. 

d .  Constant gains. The gain equations of the simpli- 
fied filter scheme settle to some constant values after a 
short transient time. The values of these settled constants, 
shown in the curves of Fig. 5, depend strongly on the 
selected values of R , , ,  but are not dependent on 
the initial conditions on Pii. The very fact that the 
different Pii gains, for identical values of Ri i ,  settle to 
almost the same constant values shows that the linear 
terms in the simplified gain equations have a relatively 
insignificant role. In this connection, it should be remem- 
bered that the coefficients of these linear terms are the 
corresponding derivatives of the system equations. 

e. Reliability. The reliability of the simplified filter 
regarding its tracking perfornlance and stability remains 
unchanged when applying it in different regions of the 
state space for sequentially estinlating the state vector. 

f. Tracking performance. The simplified filter has 
faster and snloother tracking performance than the full 
filter scheme. The apparent reason for this is that the 
cross-correlated contributions from the observation vector 
to estimating the state variables have a retarding effect 
on the convergence of the con~ponent equations of the 
full filter scheme. 

3. Cornparison of fhe full and sinzplified filters. For 
the sake of simplicity, the simulation of a vertical tra- 
jectory is quoted here to illustrate the tracking per- 
I.'ormance and dynamics of the full filter as compared 
to the tracking perfornlance and dynamics of the 
diagonally reduced filter. 

The full MPLS filter scheme for sequentially esti- 
mating altitude and velocity in vertical descent, given 
linear observations on altitude and velocity, is given by 
the following differential equations4: 

A A A x, = g - K X ;  exp ( -h i1)  + 2 ~ , ,  ( y ,  - 4,) + 2P3, ( y ,  - x3) 

(16) 

A A A A 
PI3 = -P,, + Kbxiexp ( -  bx,)P,, - 2% exp (- bx,) PI, 

A i,, = 2KI?k;exp (-bx,) P,, - 4 ~ 4 ,  exp (- b4,) P,, 

-2(P:, + P;,) + R33 (19) 

A~cord ing~ to  proposition 1 defined by Eqs. (5)  and 
(6), putting PI, = P,, = 0 in Eqs. (15-19), the simplified 
time-varying diagonal filter for sequentially estimating 
altitude and velocity of a vertically descending vehicle 
then beconles : 

r i  A A A 
x, = g - Kxi exp (- bx,) + 2P33 ( y ,  - x,) (21) 

A i,, = - 4 ~ 4 ,  exp (-bx,) P3, - 2P;, + R,, (23) 

In simulating the full as well as the simplified filters 
for the vertical case, given by Eqs. (15-23), the same 
noise and initial conditions were applied as for the 
ballistic case described previously. The obtained results 
are shown in Fig. 6. 

The curves of Fig. 6 clearly show that the simplified, 
diagonally reduced filter has a better tracking per- 
formance than the full filter. For the sake of uniformity 
in comparing the tracking performance of the diagonal 
filter to that of the full filter, the results shown in Fig. 6 
were obtained with the same R,, and R,, values for both 
filters and with R,, = 0 for the full filter. 

'These equations can be obtained from Eqs. ( B - 3 )  tPoue;h (B-12) 
in Appendix B by omitting the equations for a,, PI,, P,?, P,, and 
putting Plz = P2, = PZ3 = 0 and k2 = ~ / 2  in the remaining equations. 
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ferential equations. The settled values of Pij are 
dependent only on the selected set of Rij values. 

TIME, s 

Fig. 6. Full and diagonal filters with time-varying 
gains (linear observations) 

The curves of Fig. 7 display the behavior of the gain 
equations of the full filter as a function of the applied 
R,, values and applied initial conditions on P i j ,  keeping 
the values of R,, and R,, fixed. The results can be sum- 
marized as follows: 

(1) The gain equations P i j  settle to the same constant 
values for a given set of R i j  values despite the 
change of the initial conditions on the gain dif- 

(2) For given values of R,, and R,, there exists a value 
for R,, for which P,, = P,, = 0 after a short tran- 
sient time. This is clearly shown in the set of 
curves in Fig. 7, where the condition P,, = PI, = 0 
is obtained by R,, = 3.5 after 0.6 s. I t  is noted 
that, for changing the values of R,, and R,,, there 
exists another corresponding value of R,, for which 
F13 = P I 3  = 0 after a short transient time. 

(3) For a given set of R,, and R,, values, the change 
in R,, results only in small changes in the settled 
values of P I ,  and P,,, as shown in Fig. 7. This 
means that there is only a very weak coupling 
between the diagonal and off-diagonal gain dif- 
ferential equations. 

The result summarized under item (2) above is the 
most interesting and important. That  result forms 
the mathematical explanation and justification for the 
diagonally reduced simplified filter which is described 
by proposition 1. In view of the result noted in item (2), 
the disregarding of all but the diagonal gain equations 
in the filtering scheme is, in epect, equivalent to choos- 
ing the Ri values such that P i j  = Pi = 0 after a short 
transient time. 

The condition PI,  = PI ,  = 0 in (t,,t,) is, in effect, a 
diagonally reduced filter almost in the entire time inter- 
val (O,t,), since ~t = t,<< t,. The dynamics of the diag- 
onal filter (where P, ,  = $,, = O  from t = 0) and the 
dynamics of the full filter (with R,, values yielding 
P i ,  = P I ,  = 0 after ~t transient time) are different only 
during the transient part of the filtering process, when 
i,, and P I ,  in the full filter scheme are still different 
from zero. I t  has to be noted, however, that the diagonal 
filter effects shorter and smoother transient estimates 
than the corresponding full filter eyen if it is operated 
with such R,, values which yield P I ,  = P I ,  = O  after a 
A t  transient time. 

I t  is interesting to note that the full filter,.even if it is 
operated with proper Ri values which yield Pi = Pi = 0 
after a short transient time, has a tendency to allow 
sections to diverge on the transient parts of the esti- 
mated trajectories. Thus, it can be concluded that the 
off-diagonal gain equations do not contribute to the filter's 
tracking performance in a positive sense in the investi- 
gated class of cases. They represent redundant opera- 
tions in the filtering process and degenerate the filter's 
tracking performance. 
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Fig. 7.  l i m e  behavior of gains in a full filter (linear observations; vertical descent) 
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Alternatively, it can also be stated that the diagonal 
filter in the investigated cases yields converging esti- 
mates at least as good as the full filter. If this is true 
generally, there is certainly no need for implementing 
the full filter scheme. 

B. Nonlinear Observations 

When proposition 1 is applied to Eqs. (C-4) through 
(C-12) in Appendix C ,  the time-varying diagonally re- 
duced filter for sequentially estimating altitude, path 
angle, and velocity-given noisy nonlinear observations 
on all states-is composed of the following set of ordi- 
nary nonlinear differential equations : 

A A + 2 ~ , , 2 ,  [ y ,  cos (x,  - 0) - y3 sin ( x ,  - @ ) I  (25) 

i A A A x, = g sin x, - Kx: exp ( - bx,) 
A A + 2p3, [ y 2  sin (4, - 0) + y, cos ( x ,  - 0) - x,] 

(26) 

A 
A 

= - 2 ~ 2 2  ($ - ?) sin x, 

- SP; ,  4, [y, sin (2, - 8) + y3 cos ( 4 2  - 0)1 + R z  

(28) 

= - 4P3, ~ 4 ,  exp (- b:,) - 2P:, + A,, (29) 

Again, the time-varying diagonally reduced filter 
scheme, given by Eqs. (24-29), has a much simpler struc- 
ture than the full filter scheme given by Eqs. (C-4) 
through (C-12) in Appendix C .  The new features of the 
time-varying diagonal filter scheme with nonlinear obser- 
vations as compared to the corresponding full filter 
scheme are the following: 

( 1 )  The dimensionality of the filter scheme is reduced 
from 9 to 6. 

( 2 )  The terms in the diagonal gain equations are re- 
duced by a factor of 4. 

(3) The diagonal gain equations are decoupled from 
each other. 

(4) There is only one gain term in Eqs. (24-26) which 
takes care of the running observations. 

( 5 )  The state-dependent coefficients of the linear terms 
in Eqs. (27-29) are the second and third diagonal 
elements of the Jacobian of the system equations 
[given by Eq. (B-3) ,  Appendix B ] ,  while the state- 
dependent coefficients of the quadratic terms in 
those equations are the diagonal elements of the 
Jacobian [given by Eq. (C-3),  Appendix C ]  which 
is the second derivative of the observation vector. 

( 6 )  The meaning of the diagonal elements of the 
weighting matrix R is again reinterpreted in the 
diagonally reduced filter scheme. This is again 
signified by a bar over the term Zii. 

( 7 )  The observations explicitly appear as forcing terms 
in one of the gain differential equations, Eq. (28).  
The other two gain differential equations, Eqs. (27) 
and (29), are decoupled from the observations; 
thus, they are essentially identical to the gain dif- 
ferential equations, Eqs. (11) and (13),  for the 
linear observation vector. Hence the gain differ- 
ential equations of the diagonally reduced filters 
for the specified linear observation vector and for 
the specified nonlinear observation vector differ 
only in one gain equation. That gain equation is 
related to the path angle. 

(8 )  The gain terms in the state estimator equations of 
the filter scheme for the nonlinear observation 
vector are not simply the products of the gains 
and the error between the estimated and measured 
states, as is the case when dealing with the linear 
observation vector. For the nonlinear observation 
vector the gain terms in the state estimator equa- 
tions also involve state-dependent coefficients which 
are the first derivatives of the observation vector. 

1.  Input data. In the digital simulation of the time- 
varying diagonal filter scheme, given by Eqs. (24) through 
(29), the following weighting factors were applied [ ( A ) ,  
( B ) ,  and ( C )  denote the curves in Fig. 81: 

(A) Ell = 20, iT,, = 104, Ti,, = so 

( B )  Rll = 10, R,, = 5 x 10-5, E,, = 25 
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The other input data (initial conditions, noise, param- 
eters) as well as the employed integration routine were 
identical to those applied for simulating the diagonal 
filtel for a linear observation vector. (See Subsection A.) 

2. General results. The main results of the digital sim- 
ulations of the time-varying diagonal filter for the speci- 
fied nonlinear observations are the same as those for the 
specified linear observations summarized in Subsection A. 
Hence, the essential result is the conformity of the results 
obtained for the specified nonlinear observations to those 
obtained for the specified linear observations. The con- 
formity of the results for the two observation vectors is 
interesting since the gain differential equations differ 
somewhat in the two filter schemes. 

A typical set of results is presented in Fig. 8. These 
curves clearly demonstrate that the tracking performance 
and stability of the diagonal filter are satisfactory. The 
simplified filter tracks the true trajectories sufficiently 
smoothly after a short (1.0 s) transient time. Further, the 
response of the simplified filter to the wrong initial esti- 
mates on the state variables is also excellent. The curves 
also illustrate how the changes in the values of the 
weighting factors i T , i  affect the filter's tracking per- 
formance. The high a , ,  values yield shorter transient 
parts than the low a,, values, while the low K,,  values 
yield slightly smoother estimated trajectories. 

The curve sets shown in Fig. 9 show how the time 
behavior of the gain equations of the diagonal filter 
depend on the applied weighting factors Eii and on the 
applied initial conditions of Pii. The gain equations of 
the diagonal filter scheme settle to some constant values 
after a short transient time in each case. The settled 
values of P i i  depend strongly on the selected values of 
Rii but are not dependent on the applied initial condi- 
tions. This result is of great importance with regard to 
the response characteristics and stability of the diagonal 
filter. 

The fact that the different Pii gains, for identical 
values of Rii, settle to almost the same constant values 
can again be explained by the relative insignificance of 
the linear terms in the gain equations of the diagonal 
filter. In this connection, it is interesting to note that the 
differential equation for the P,, gain also settles to con- 
stant values despite the strongly state- and observation- 
dependent coefficient of the quadratic term in Eq. (28). 
I t  should be emphasized, however, that the weighting 
factors and the settled steady-state values belonging to 
the differential equation for the P,, gain (for the non- 

linear observation vector) are five or six orders of mag- 
nitude smaller than the weighting factors and settled 
values which belong to the differential equation for the 
P,, gain (linear observation vector). (Compare curves of 
Fig. 9 with the P,, curves shown in Fig. 5.) 

The reliability of the diagonal filter was again tested 
by applying it to sequentially estimating the state vector 
in different regions of the state space. In doing so, the 
filter's good response characteristics and stability re- 
mained unchanged. 

V. Constant-Gain Diagonal Filter 

In the preceding section it was emphasized that the 
gain differential equations of the diagonal filter settle to 
constant values after a short transient time in each of 
the investigated cases. This specific behavior of the gains 
was exhibited even by the simulated full filter. Further- 
more, it has to be noted that the transient parts of the 
estimated trajectories and the transient parts of the cor- 
responding gains did exhibit a one-to-one correspondence 
on the time scale. Hence, the general result may con- 
cisely be stated as follows: the diagonal filter scheme 
yields a constant algebraic structure for the gains; the 
diagonal filter tracks the true trajectories from that point 
on where the gains settle to constant values; the constant 
gains provide stable and sufficiently smooth estimated 
trajectories. 

The very existence of the settled values of the gains 
and the associated stable and smooth tracking per- 
formance of the diagonal filter suggests the idea set forth 
by proposition 2 (Section 111-A). Following that propo- 
sition, the settled values of the diagonal filter will now 
be applied as constant gains in the diagonally reduced 
filter scheme from the initiation of sequential estimation 
for the specified linear and nonlinear observation vectors. 
Thus, the on-line solution (or mechanization) of all gain 
equations will be omitted in the filtering process. 

A. Linear Observations 

According to proposition 2, the constant-gain diagonal 
filter for sequentially estimating altitude, path angle, and 
velocity, given noisy linear observations on all states, 
becomes [from Eqs. (&lo)] : 

A A A A 
XI = -x3 sin x, + 2Pk (gl - xl) 

A 
A A 4, = (-& - :) COS', + 2P;,(y, - r,) 
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Fig. 8. Diagonal filter with time-varying 

A A A 
x3 = g sin% - K x i  exp ( -  ba,) + 2 ~ ' ; ' ~  (y3 - 2,) 

(32) 

where now PTi are constants, the settled values of the 
Pii equations in the corresponding time-varying diagonal 
filter. The dynamic structure of the filter is shown with 
its functional components in Fig. 10. 

1. Input data and results. The constant-gain diagonal 
filter, given by Eqs. (3032), was simulated for the same 

gains (nonlinear observations) 

conditions as the time-varying diagonal filter, described 
in Section IV-A. The filter was simulated with the fol- 
lowing constant, settled diagonal gains: 

(A )  PT, = 1.57, P i ,  = 1.57, Pi ,  = 1.15 

( B )  PT, = 2.24, P;, = 2.73, P:, = 6.10 

The obtained results are depicted in Fig. 11 [ (A)  and ( B )  
denote the curves]. As the curves show, the tracking 
performance of the constant-gain diagonal filter is very 
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Fig. 9. Time behavior of gains in a diagonal filter (nonlinear observations) 

satisfactory. What is more, it tracks slightly faster than 
the corresponding time-varying diagonal filter. The typical 
transient time is 1.0 s. The tracking characteristics of the 
constant-gain diagonal filter as a function of the applied 
constant gains completely correspond to the tracking 
characteristics of the time-varying diagonal filter as a 
function of the applied weighting factors. Thus, high 
constant gains yield shorter transient estimates than the 
low constant gains, while the low constant gains yield 

smoother estimates than the high constant gains. The 
response of the constant-gain diagonal filter to the wrong 
initial estimates on the states is also very stable. 

2. Comparison of the constant-gain diagonal and full 
filters. When simulating the bIPLS nonlinear filter for a 
vertical trajectory problem it was found in Section IV-A 
that the gain equations of the full filter also settle to 
constant values after a short transient time. To illustrate 
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Fig. 10. Functional configuration of a constant-gain diagonal filter (linear observations) 

the significance of the diagonal structure of the constant- 
gain filter scheme regarding the filter's tracking per- 
formance, it is now compared to the tracking perfor- 
mance of the full filter scheme where also constant gains 
are applied from the initiation of the sequential 
estimation. 

The constant-gain full filter equations for a vertical 
trajectory problem, given noisy linear observations on all 
states, become [from Eqs. (15) and (16)l: 

The constant-gain diagonal filter equations for the 
same problem are the same as Eqs. (33) and (34) but 
with P &  0. 

The two filter schemes were simulated with PT, = 2.28, 
P& = -0.3, P &  = 3.51 constant gains. The obtained 
results are depicted in Fig. 12. As these curves 
show, the tracking performance of the constant-gain 
diagonal filter is considerably better than the tracking 
performance of the constant-gain full filter., Conse- 
quently, the cross-correlated (off-diagonal) gain term 
degrades the filter's tracking performance in this case. 
It  must be noted, however, that choosing P;, = 0 for the 
entire filtering process also may be interpreted as the 
realization of a constant-gain full filter since there exists 
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Fig. 11 .  Constant-gain diagonal filters (linear observations) 

A a weighting number R,, for which PI3 stabilizes at zero A 

after a short transient time. (See the curves in Fig. 7 
i, = (t - :) cosx2 

and Section IV-A-3.) A + 2p;,i3 [y2 cos (i2 - e) - y, sin ( r2  - B)] 

B. Nonlinear Observations; Input Data and Results (36) 

According to proposition 2, the constant-gain diagonal X, A = g sin x, A - Kx: A exp ( - Dx,) A 

filter for sequentially estimating altitude, path angle, A A 4 
and velocity, given noisy nonlinear observations on all + 2P:, [y2 sin (x, - 0) + y, cos (x, - 19) -%,I 
states, becomes [from Eqs. (2426)l  : (37) 

where now Py, are constants, the settled values of the 
(35) P i  galn equations in the corresponding time-varying 
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Fig. 12. Constant-gain full and diagonal filters 
(linear observations; vertical descent) 

diagonal filter. The dynainic structure of the filter 
[Eqs. (35-37)] is shown in its functional configuration 
in Fig. 13. The constant-gain diagonal filter, given by 
Eqs. (35-37) was simulated with the following, constant, 
diagonal gains : 

The obtained results are depicted in Fig. 14 [(A), (B), 
and (C) denote the curves]. Here again, it is seen that 
the tracking performance of the constant-gain diagonal 
filter is as good as that of the time-varying diagonal filter. 
The tracking characteristics of the constant-gain diagonal 
filter and the time-varying diagonal filter are identical. 
Thus, the low constant gains result in snloother estimates 
than the high constant gains, while the high constant 
gains yield faster transient estilnates than the low con- 
stant gains. 

I t  has to be noted that the constant-gain diagonal 
filters for the specified linear and nonlinear observation 
vectors differ only in the values of the Pi2 constant gains 
and in the coefficients of the corresponding gain terms. 
For a linear observation vector these coefficients are 
constants, while for a nonlinear observation vector they 
are state-dependent. 

C. Merits of the Constant-Gain Diagonal Filter 

The merits of the sinlplifications associated with the 
constant-gain diagonal filter can best be  evaluated in 
terms of the nunlerical operations involved in the solu- 
tion (or mechanization) of the filters. The constant-gain 
diagonal filter equations involve approximately only 
15-25% of the numerical operations which are needed 
to solve the corresponding time-varying diagonal filter 
equations. On the other hand, the time-varying diagonal 
filter equations involve approximately only 10-15% of 
the nunlerical operations necessary to solve the corre- 
sponding full filter equations. Hence, the application of 
the constant-gain diagonal filter scheme for estinlation 
purposes implies approximately 95-98% reduction of 
the nulnerical operations needed to solve (or mechanize) 
the full filter scheme. The constant-gain diagonal filter, 
despite its strongly simplified structure, provided con- 
siderably better tracking characteristics in the investi- 
gated cases than the time-varying diagonal filter or the 
full filter. The practical merits of these results are obvious. 

I t  must be emphasized, finally, that the constant-gain 
diagonal filter schenle represents the ultimate simplifying 
reduction of the MPLS nonlinear filter. 

(A )  P,*, = 2.6, P:, = 7,8 x lo-", P i 3  = 5.0 VI. Performance of the Constant-Gain Diagonal 
Filter vs Partially Unknown Atmospheric 

(B) PT, = 1.8, PZS = 5.5 x lo-';, P &  = 3.5 Forces 

In the sin~ulatioll studies on the performance of the 
(C) PT1 = 0.8, P"; = 22. X P,& = 2.2 constant-gain diagonal filter, the only applied unknown 
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Fig. 13. Functional configuration of a constant-gain diagonal filter (nonlinear observations) 

dynamic force was a uniformly distributed random 
dynamic disturbance added to the known deterministic 
forces-that is, to the gravity and drag. In other words, 
the same deterministic parameters were applied to 
simulating the true trajectories as well as to constructing 
the filter scheme. The filtering problem related to the 
flight of a ballistic vehicle in a partially unknown atmos- 
pheric environment, however, certainly implies acting 
unknown forces other than some uniformly distributed 
random dynamic disturbances. From the filtering point 
of view, a partially unknown atmospheric environment 
also implies acting forces of deterministic, or, of systema- 
tic character (drag and wind). The question therefore 
arises whether the constant-gain diagonal filter is suited 
to sequentially estimate the current states of a ballistic 
vehicle the dynamic state of which is acted on by forces 
of deterministic or systematic character partially un- 
known before the flight. 

The partially unknown dynamic character (magnitude 
and time history) of the acting drag may be accounted 
for in the filtering scheme by treating the constant param- 
eters of the drag force of a given model as new state 
variables having zero time derivatives. Thus, the filtering 
scheme could be extended to include also the sequential 
estimation of the constant values of the parameters of 
a given drag-force model. This task, however, is beyond 
the scope of the present study,5 since the essential aim 
of this study is to develop and to test well defined simpli- 
fications of the MPLS nonlinear filter scheme for such 
cases when the noisy measurement vector includes all 
states. The constant parameters of a model drag force, 
however, cannot be measured in the same way as, say, 
altitude and velocity-that is, independently on the 

'This type of parameter estimation problem will be treated in a sub- 
sequent study. 
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Fig. 14. Constant-gain diagonal filters (nonlinear observations) 

dynamic description of the system. Now, instead of extend- 
ing the filter scheme to include the estimation of 
parameters for producing up-to-,date estimates on the 
dynamic states of the vehicle, the constant-gain diagonal 
filter will be applied in the same form as derived in 
Section V; that is, it will be applied in that form which 
is restricted to estimating only the noisy states. 

A. Digital Simulation of an Unknown Situation 

vehicle (whose dynamic behavior is influenced by detel- 
ministic or systematic forces partially unknown before 
the flight) involves the following procedure in the digital 
simulation of the filter. 

There is a given set of constant parameters, belonging 
to the model drag force, which is applied in the filter 
equations. This set of constant parameters may be con- 
sidered as the a priori set of parameter values. 

The application of the constant-gain diagonal filter to There is another set of parameter values, belonging 
sequentially estimating the current states of a baIIistic to the mode1 drag force, which is applied to generate the 
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measurement vector by solving the system equations, 
This set of constant parameters nlay be very much 
(50-10096) different froin that one applied in the filter 
equations and is considered to represent the actual 
situation. 

In generating the measurement vector by solving the 
system equations, there are two forces added to the sys- 
tem equations which are not represented explicitly in 
the filter equations: wind pressure and retrothrust. The 
retrothrust could have been represented explicitly in 
the filter equations. However, to test the tracking per- 
formance of the constant-gain diagonal filter under con- 
ditions when the system's dynamic description in the 
filter equations is highly imprecise, some cases were 
simulated when the retrothrust was not represented in 
the filter equations. 

The statistical characteristics of the random dynamic 
and measurement noise are being varied. In Section V a 
uniformly distributed random noise was applied for 
generating dynamic and measurement noise. Now, in 
addition to that, gaussian noise is introduced. This is 
done to test whether and how a change in the noise 
statistics affects the tracking performance of the constant- 
gain diagonal filter. 

1. Input data. The atmospheric parameters applied in 
the filter equations correspond to the VM-7 atmosphere. 
These values were used throughout this study and are 
listed in Appendix D. The noisy measurement vector, 
however, was generated by applying the values of the 
VM-4 atmosphere. These values, for ground level density 
90 and the inverse exponential scale factor b,  are: 

For generating the measurement vector, a wind force 
and a retrothrust were applied. The wind was modeled 
for an asymnletrically sinusoidal time history with maxi- 
mum axial intensities corresponding to 0.6-0.8 Martian 
gravity, according to the following expression: 

This model roughly corresponds to a situation when the 
vehicle's trajectory crosses a double-centered large-scale 
atmospheric turbulence. 

To make the dynamic situation "more confused for 
the filter, the retrothrust was switched on only in the 
second half of the filtering process, approxinlately 6.5 s 
after the initiation of sequential estimation. The applied 
retrothrust was of 1.5 X lo3 Ibf constant amplitude, 
Neither the wind nor the retrothrust was explicitly 
accounted for in the filter equations; they were trans- 
mitted to the filter sche~ne only through the actual 
n~easurements. Further, the application of the retrothrust 
for generating the ~neasurement vector introduces an 
additional systematic error into the filter equations. This 
additional error is due to the depletion of the vehicle's 
Illass which also is not represented in the filter equations. 

For generating dynamic and lneasurenlent noise, the 
following standard deviations were applied for the 
gaussian disturbances. For measurements: 

a, = 300 ft, altitude 

a, = 15 ft/s 
body-referenced velocity conlponents 

a3 = 30 ft/s 

For dynamic noise: 

= 6 ft/s2, acceleration 

When the noise was generated by uniformly distri- 
buted random numbers the relative noise anlplitudes 
were assumed to be the same as described in 
Section IV-A. 

The simulation studies were carried out only for the case 
of the nonlinear observation vector. Hence, the constant- 
gain diagonal filter equations are the same as Eqs. (3537). 
In those equations the following constant gains were 
applied: PT1 = 1.8, P,*, = 0.8 X P:, = 2.2. 

2. Results. A representative set of the obtained results 
is shown in Fig. 15. Representative dynamic inputs, true 
as well as assumed, are depicted in Fig. 16, while Fig. 17 
displays the noisy nleasuren~ents on the body-referenced 
velocity components. 

The results shown in Fig. 15 are truly remarkable: 
Despite the strong mistnatclz of tlze atnzospheric paranl- 
eters and despite tlze strong z~nknozon dynamic inputs, 
the constant-gain diagonal filter exhibits excellent track- 
ing performance! It is also clear from the curves that 
the change in the noise statistics from uniform distribu- 
tion to normal distribution did not alter the filter's good 
tracking performance in any noticeable manner. 
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To get a close look at the tracking performance of the 
constant-gain diagonal filter \vhen strong nn1tnon.n dy- 
namic inputs are applied, the time histories of the rela- 
tive estimatioil errors REE and the relative measurement 
errors RME are also computed": 

A x,(t) - xi(t) 
REE = 

xi (t) 

and 

The time histories of these relative errors are displayed 
in Fig. 18. (The noise pattern in these figures is gaussian.) 
As these figures show the REE are less than 10% of the 
RME after a short (0.5-1 s) transient time. Hence, the 
constant-gain diagonal filter provides a very effective 
filtering of the nleasurement noise. The overall relative 
estinlation error is approximately 0.1%. 

The velocity graph of Fig. 18 shows how the relative 
error of the estimated velocity behaves when the retro- 
thrust is explicitly not accounted for in the filter equa- 
tions. In such a case there is a 0.5% systenzatic relative 
error in the estimated velocities after the retrothrust is 
turned on. The magnitude of that systematic error, 
however, is surprisingly sillall when considering the 
relative magnitude of the retrothrust. 

In connection with Fig. 18, it should be noted that 
a simple integration of the system equations in that form 
as they are represented in the filter would yield trajec- 
tories which are 2040% in error relative to the true 
trajectories during the simulated period of sequential 
estimation. This fact signifies the importance and strength 
of the filtering scheme, the essential feature of which 
is the proper conlbination of the known system equations 
with the running observations for sequentially estimating 
the states. Thus, the constant-gain diagonal filter (as 
applied to the simulated "unkno~vn situation") tracks 
the true trajectories very well despite the strong uncer- 
tainties in the system description, and it filters out the 
nleasurement noise very effectively. 

The successful tracking performance of the constant- 
gain diagonal filter is evidently due to the successful 
choice of the weight R for the system equations relative 

Tn these expressions: x, = true trajectories, u ,  = measured trajec- 
tories, 4, = estimated trajectories. 

to the weight Q for the observation equations. This 
successful choice of the relative weights, in turn, yields 
those constant gains which provide the filter's good 
tracking performance despite the strong unknown inputs 
of dynamic noise and nleasurement noise. 

B. Remarks on the Interference Between the Filter's 
Performance and the Computational Algorithms 

In the present study, the filter's tracking performance 
was studied by employing the continuous formulation of 
the filter. One obvious way to investigate how the ap- 
plied computational algorithms (integration routines) 
interfere with the filter's tracking performance is to 
change the integration step size for a fixed integration 
routine. In doing so it is expected that, for a given set of 
filter parameters, the snlaller the step size the faster and 
smoother the filter's tracking performance. 

The integration step size applied throughout in the 
digital simulations in this study was 10 ms. A 1-ms step 
size did not result in any significant improvement in the 
filter's tracking performance. Likewise, there was no 
noticeable change in the filter's tracking performance 
when the step size was increased to 20-30 ms. Further 
increase of the integration step size, however, yielded 
noticeable changes in the smoothness of the estimated 
trajectories. When the step size was increased to 0.2-0.3 s, 
the estimated trajectories could no longer be distinguished 
from the noisy measurements. 

For the constant-gain diagonal filter it has been found 
that the negative eiFect of the increased integration step 
size on the filter's tracking performance may very well 
be counteracted by a proper change of the constant 
gains. For demonstrating this point, Fig. 15 displays 
two sets of results. One is obtained by applying a 10-ms 
step size and by using P;, = 1.8, P*,, = 8 X P:, = 2.2 
constant gains. The other set is dbtained by applying a 
0.1-s step size and by taking only half of the values of the 
constant gains listed above. Again, as shown in Fig. 15, 
the results are interesting. The filter's tracking perfor- 
mance is essentially the same in both cases, smooth and 
stable, only the transient parts of the estimated tra- 
jectories differ slightly. In the case of the 0.1-s step size 
and taking half of the gain values, the transient time is 
increased by a factor of two, from 0.5-1 s to 1-2 s. 

The possibility of increasing the integration step size 
without degenerating the final tracking performance of 
the constant-gain diagonal filter is of great significance 
with respect to the real-time nlechanization of the filter. 
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Fig. 15. Constant-gain diagonal filters (nonlinear observations and "unknown" deterministic inputs) 
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Fig. 16. True and "unknown" dynamic inputs for a constant-gain diagonal filter 

VII. Summary and Conclusions 

Real-time, on-line estimation of states is an essential 
functional part of the terminal-guidance logic having 
the objective of guiding a spacecraft to a soft landing on 
an atmosphere-bearing distant planet. Following modern 
concepts in the theory of estimation, nonlinear filtering 
by a differential-equation technique is applied to sequen- 
tially estimating the current state of a ballistic vehicle 
in an imperfectly known planetary atmosphere. The 
basic functional property of a suitably developed sequen- 
tial estimator (or nonlinear filter) scheme is its feasibility 

for real-time implementation. Because of its determin- 
istic derivation, the nlaxilnum principle least-squares 
nonlinear filter is selected for estimation purposes. 

The nature of the terminal guidance problem con- 
sidered in this study implies that the computations re- 
lated to the digital filtering process must be executed 
by a special-purpose on-board computer. Consequently, 
the mathematical operations of filtering must not be 
overly complex. In this study suitable methods are de- 
veloped by which the mathematical complexity of the 
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Fig. 17. Noisy measurements on body-referenced velocity components (as 
inputs to a constant gain diagonal filter) 
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Fig. 18. Time histories of relative errors for a constant-gain diagonal filter 
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maximu111 principle least-squares nonlinear filter can be 
t.ecluced systematically. Thcsc rnetl~ods are developed 
for such cases when all states arc available for lincar or 
nonlinear n~easurements. The mathematical justification 
of the developed simplifications are briefly explained 
and demonstrated. 

The simplifications are developed in two major steps. 
The first step is to reduce the din~ensionality of the filter 
by omitting all off-diagonal gains from the filter scheme. 
For the resulting time-varying diagonal filter, reliable 
tracking performance can be assured by a judicious 
choice of the relative weighting factors for the residual 
errors. The second step is to omit even the time-varying 
diagonal gain equations from the filter when the diagonal 
gain equations stabilize to constai~t values after a short 
transient time, and to apply these settled values as con- 
stant gains from the initiation of sequential estimation. 

The constant-gain diagonal filter represents the ulti- 
mate simplifying reduction of the maximum principle 
least-squares nonlinear filter scheme. This ultimately 
simplified filter scheme consists of the known system 
equations plus one constant-gain term which is added to 
each system equation. These single constant-gain terms 
will "transmit" all the current measurement informations 
on the states into the filter equations where they are 
solved sequentially to estimate the current value of the 
state vector. 

The developed simplified filters are applied for se- 
quentially estimating the states of a ballistic vehicle in 
an imperfectly known atmosphere. Extensive digital sim- 
ulation studies were carried out to test the reliability, 
stability, and tracking performance of the simplified 
filters as applied to that particular problem. The simpli- 
fied filters exhibited excellent tracking performance. 
Further, the simplified filters provided consistently bet- 
ter tracking performance than the full filters in the in- 
vestigated cases. The simplified filters resulted in reliable 
tracking even for 100% or inore mismatch of the at- 
mospheric parameter values. This reliable tracking is due 
to the successful choice of the weight R for the systei~l 

equations relative to the ~veight Q for the observation 
equ a t '  1011s. 

The simplified filters, applied to the ballistic state 
estimation problem, have the follo~ving operational char- 
acteristics : 

(1) Transient time of 0.5-2.0 s. 

(2) Relatlve errors in the estimated states are reduced 
to 10% or less of the relative errors in the measured 
states. 

(3) Low-frequency oscillations of the estiillated tra- 
jectol-ies arouild the true trajectories. 

These operational characteristics are mainly inde- 
pendent on the initiation of the filtering, but are highly 
dependent on the applied relative weighting for the 
residual errors and, in turn, on the applied co~lstant 
gains. (The stabilized values of the time-varying diag- 
onal gain equations depend on the applied relative 
weighting for the residual errors.) 

In the investigated cases, the best tracking perfor- 
nlance was obtained by the constant-gain diagonal filter. 
This filter can be mechanized by approximately 95% 
reduction of the mathematical operations needed to 
mechanize the corresponding full filter scheme. The 
IBM 7094 digital simulation time for the constant-gain 
diagonal filter is less than the simulated actual flight 
time. (Even for the time-varying diagonal filter the digi- 
tal simulation time is less than the actual flight time in 
the investigated cases.) Thus, the developed simplified 
digital filters have a particularly fast working property 
which, in principle, makes them well suited for on-board 
mechanization. 

The simplifications developed in the present study 
should primarily be viewed in relation to the particular 
application in question since, the problem being non- 
linear, the application itself also enters into the analysis 
and design of the nonlinear filter. Nevertheless, the 
developed simplifications may be indicative for other 
particular problems as well. 
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Appendix A 

System and Observafi~n Equations 

In deriving the equations of motion of a ballistic 
vehicle the following assunlptions are made. The planet 
is spherical, nonrotating and its acceleration of gravity 
is constant. Furthermore, the distribution of the atnlo- 
spheric density is inversely exponential with respect to 
the altitude, and the drag depends quadratically on the 
velocity and linearly on the atmospheric density. Then, 
in a trajectory-fixed reference frame and in a nonnloving 
atmosphere, the planar motion of the center of gravity 
of a nonlifting, gravity-turn ballistic vehicle in free fall 
is described by the following system of ordinary non- 
linear differential equations (see also Fig. A-1): 

G1 = - x3 sin x, (A-1) 

G, = ( - $) cos x, 

43 = g sin x, - Kx: exp (- bx,) (A-3) 

during the ternlinal phase of a soft-landing mission, 
Eqs. (A-1) through (A-4) call be regarded as the best 
available a priori physical knowledge on the motion of 
the vehicle in that period of time. The main uncertainty 
regarding the dynamic description of the vehicle's motion 
is due to the acting atnlospheric forces. This dynamic 
uncertainty can be said to be reflected in the values of 
parameters K and b as well as in onlitting the unknown 
wind and rand0111 atmospheric forces (turbulence, etc.) 
from the dyna~nic equations. 

For a linear observation vector, the following sinlple 
relations are enlployed 

altitude x1 + noise 

[ ~ ] = [ ~ ] = [ p a t h m g l e  velocity ]= [ X, x3 + n o i s e ]  + noise 

x4 = x, cos x, (A-4) The quantities y,, y,, y, can be thought to be the eval- 
uated outputs of some proper measuring devices. 

where the dot denotes the time derivative and 
For a nonlinear observation vector, the following rela- 

x, h - altitude, positive, upward from the surface of tions are p i g ,  A-2): 
the planet 

x, A - path angle, positive, below the local horizontal 

x3 A - velocity, positive, downward 

x, 4 - ground range, relative to some reference vertical 

g h acceleration of gravity - 

r A - radius of the planet, r >) x, 

b - inverse scale factor for the exponential distribu- 
tion of the atmospheric density 

K 4 - drag parameter, reflecting the ballistic charac- 
teristics of the vehicle as well as the ground 
level pressure on the planet 

In view of the assumptions specified above, Eqs. (A-1) 
through (A-4) describe the vehicle's motion at the termi- 
nal section of a soft-landing mission when x, 5 10 mi 
and x, 5 700 mi/h. The   nod el for the atnlospheric den- 
sity distribution corresponds to an isothermal atl~~osphere 
in hydrostatic equilibrium. Fronl the point of view of 
estimating the state of the vehicle in some time interval 

x, sin (x, - 0) + noise 

x, cos (x, -- 0) + noise 

where 

d h - slant range 

0 h - slant range angle 

c A sin B - 

Ws 4 velocity in the body-referenced X direction 
- 

WIT 4 velocity in the body-referenced Y direction 
- 

The observation vector given by Eq. (A-6) corresponds 
to measurements provided by a body-mounted radar 
altimeter and by a body-mounted doppler radar velocity 
sensor for a planar nlotion (Ref. 13). 
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I (LOCAL HORIZONTAL) 

h = ALTITUDE 
a = PATH ANGLE 
v = VELOCITY 
s = GROUND RANGE 
D = DRAG 
g = GRAVITY 
r = RADIUS OF THE 

PLANET 

Fig. A- l  . State variables anel forces 

MEASUREMENT VECTOR: v sin p + NOISE 

v cos p+ NOISE 

D sin 8 

STATE VECTOR: 

Fig. A-2. A nonlinear measurement vector 
for ballistic descent 
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Appendix B 

Futl Nonlinear Filter Equations /or the Linear Observal~ion Vector 

When the sequential estimation probleln is restricted to estimating altitude s,, path angle m L ,  and velocity m,, Eq. ( A - 4 )  
in the systenl equations is not of interest since the ground range X, does not a p ~ e a r  in thc remaining differential 
equations governing the tiiile histories of the altitude, path angle, and velocity. Thus, the diniensiollality of the state 
vector N will be the sallie as of the linear observation vector z j  defined in Appendix A by Eq. (A-5). The Jacobian of 
that observation vector is 

For convenience, the identity nlatrix is selected for the quasi-norm factor Q related to the observations. Hence, 

The Jacobian of the systein equations, Eqs. (A-1) through (A-3), is 

r O  A A - x ,  COS x2 A 
- sinx, 1 

A A L b ~ 4 :  exp (- bx,)  g cos x ,  A 
- 2 K x 3  exp ( -  bk,) 1 

Heme, the full nlaximunl principle least-squares (MPLS) nonlinear filter schenles [Eqs. (1-3) in Section 11-A] for 
sequentially estinlating altitude, path angle, and velocity becomes: 

h A A A A A 
x1 = - x ,  sin% + 2Pll  ( y ,  - x,) + 2P,, ( z j ,  - x,) + 2P,, ( z j ,  - x,)  ( B - 4 )  

A A A A A A A 
~3 = g sin 2, - KN: exp (- bx,)  + 2P,, ( z j ,  - x,) + 2P2,  ( 9 ,  - N,) + 2 ~ , ,  ( y ,  - .,) 

A A A 
P I ,  = - 2(Pq ,  + P; ,  + P :,) - 2(P1,x, cos N ,  + P I ,  sin x,) + R,, 

= - ~(P , ,P , ,  + P,,P,, + P,,P,,) - cask, [P,,:, + PI3 (g + +-)I - sink, [P , ,  + P,,  (f - +)I + R,, 

(B-8) 

A A A A A 
i 1 3  = - ~ ( P I I P I ~  + P ~ ~ P ~ ~  + P13P31) + cos . 4 2 ( g ~ 1 2  - P23~3) - p3,  sinm, + ~ s ,  exp (-bm,) [b~, ,m,  - ~ P , , , I  + R,, 

(B-9) 
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i 2 2 =  - ~ ( P I ~ + P ~ ~ + P : ~ )  - 2~,,sin$(-f---$) x3 - ~ P , , c ~ ~ ~ ~ ( ~ - - + )  + R ? ?  (B-10) 

i 2 3  = - 2(P12P13 + P22P23 f P23P33) + COS 

A A 
- PZ3 sin 4, (k - +) + Kx, exp ( -  bx,) [bPl24, - 2P2,] + R,, (B-11) x3 

i13 = - 2(P& + Pi, + P i , )  + 2~,,b~4?,2 exp (-b&) + 2P,,gcos$ - 4 ~ , , ~ $ e x p  (-b:,) + R,, (B-12) 

When (l/r) <( ( g / Q , 2 ) ,  then 1/r can be omitted from the filter equations. 
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Appendix C 

Fu~E Nonlinear Filter Equations for the Nonlinear Observation Vector 

I t  is assunled that the sequential estimation problenl is restricted to estimating altitude, path angle, and velocity 
(the essential system variables from the point of view of the ternlinal guidance goal). Consequently, the fourth sys- 
ten1 equation [Eq. (A-4), Appendix A] is again not of interest since the differential equations for the altitude, path 
angle, and velocity are not dependent on the ground range. Thus, the dinlensionality of the state vector x is the 
sanle as of the nonlinear observation vector y defined by Eq. (A-6) in Appendix A. The transpose of the Jacobian of 
that observation vector is 

A A A 
0 k, cos (x, - 0) - x, sin (x, - 0) 

A o sin (4, - 0) cos (x, - 0) 

For convenience, the identity nlatrix is selected again for the quasi-norm factor Q related to the observations. 
Hence, Eq. (3) in Section 11-A becomes 

A A LY2 sin (4, - 0) + y, cos (x, - 0) - x,] 

The Jacobian of the vector g given by Eq. (C-2) is then 

A A A A A 0 - x, [y, sin (x, - 0) + y, cos (x, - 0)] [y, cos (x, - 0) - y, sin (x, - 0)] 
A A [y2 cos (x, - 0) - y, sin (x, - 0)] - 1 1 

The Jacobian of the system equations of Appendix A 
[Eqs. (A-1) through (A-3)] is the same as that of 
Eq. (B-3) in Appendix B. Hence, the full MPLS non- 
linear fi~tkr scheme [Section 11-A, Eqs. (1) and (2)] for 
sequentially estimating altitude, path angle, and velocity 
becomes in this case: 

A h A x1 = - x3 sin x, 

A + 2 PI, {a, [y, cos (4, - 0) - y3 sin (x2 - @)I) 
A A + 2 PI, [y, "in (x, -- 8) + y, cos (2, - 0) - x,l 

(C-4) 

A A + 2 P,, (4, [y, cos (x, - 0) - ys sin (x2 - 011 
A A A + 2 P,, [y, sin (x, - 0) + y, cos (x, - 0) - x3l 

A A A A x, = g sin x, - Kxi exp (- bx,) 

A A + 2 P,, ( 2 ,  [y, cos (x2 - 0) - I J ~  sin ( ~ 2  - 0)l) 
A A A 

$ 2 P,, [y, sin (x, - 0) + y, cos (x, - 0) - 
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A A A 2 2 A 
Pll = - 2 P12x3 cos x2 - 2 P13 sin x ,  - - Pq, c ' - - PI,- 2 ~22~4,  [ y ,  sin ( x ,  - 6') + y ,  cos (4, - @ ) I  c2 

A A A 
- 2 Pq2 x3 [ y 2  sin (x, - 6') + y,< cos ( x ,  - 8 ) ]  A A + 4 P,,P,, [y, cos ( x ,  - 8) - g3 sin ( x ,  - @ ) I  

A A + 4 P,,P,, [ y ,  cos ( x ,  - 8) - y, sin ( x ,  - 6')l 
- 2 P 5, + R.2 (C-10)  

- 2 P t ,  + R,, ( c - 7 )  

( S) A T+- c o s x ,  

A + P,,Kbx; e x p  ( - bk,) + P,,g cos 4, 

A 2 
A A - 2 P , , K ~ ,  e x p  (- bx,) - - P12P13 

- 2 ~ , , ~ , , 2 ~ [ y ~ s i n ( x ,  - 8) i- y , c o s ( x ,  - 011 c2 

A + 2(Pl,P,3 + Pl3PZ2) [ y ,  cos (x ,  - 6') - 2P2,Pz3x3 A [y, sin ( x ,  A - 8) + y3 cos (x ,  A - 6 ) ]  

- y3 sin (4, - 8 ) ]  - 2 Pl3PZ3 + R,, A A + 2(P,,P3, + Pi,)  [ y ,  cos ( x ,  - 0) - y ,  s in  (x2 - @)I 
- 

A A A A A P13 = - PZ32, cos x2 - sin x ,  + P,,Kbx; e x p  (- bx,) 

A A 2 A A 
A 

A P,, = 2 P,,Kbx; ex11 ( - bx,) + 2PZ3g cos x, + P,,g cos x ,  - 2 P13Kx, e x p  (- b x l )  - c2 P,,P,, 

A A A A 2 
- 2 P,,Pz3x, [ y ,  sin (4, - 6') + y3 cos ( x ,  - 6 ) ]  - 4P,,Kx, e x p  ( -  bx,) - --P2,, 

c2 

A 
f ~ ( P I z P ~ ,  f P I ~ P z , )  [yz  cos (x2 - @ )  

A A 
- 2 ~ : , 4 ,  [ y ,  sin ( x ,  - 0) + y ,  cos (2 ,  - 0)1 

A A 
- y 3 s i n ( &  - e ) ]  + 4 P,,P3, [ y, cos (2, - 0) - y3 sin (x2  - B ) ]  

A A h,, = - 2 P,, (t - $) sin x ,  - 2 ~ , ,  (4 + f) cos x ,  
W h e n  ( 1 / r )  << (&), t h e n  l / r  c a n  b e  omi t ted  fro111 the 

filter equations.  
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Appendix D 

Applied Paramelers and Computation Subroutines 

The digital simulations were carried out on an IBM Mars radius: 11.2 X 10" ft - 
7094 computer using a JPL-modified DSL/9O digital Mars atmosphere, corresponding to the VM-7 model: 
simulation language. The gaussian random numbers were 
generated by t h e  D S L / ~ O  functional subroutine called p, = 1.32 X slugs/ft" ground level density 
NORMAL. The uniformly distributed random numbers 
were generated by a JPL functional subroutine called 

b = 2.15 X 10-"t--', inverse scale factor 

PRN. The applied parameter values are as follows: Hence, the value of parameter K is: 

Mass of the vehicle: 31.1 slugs 
K = - . - .  

Ballistic coefficient: 0.3 slug/ft2 1.32 X 
2 0.3 

Mars gravity: 12.3 ft/s2 = 2.20 X 10-"t-l 

b inverse scale factor for the exponential dis- y3 measured body-referenced velocity compo- 
tribution of atmospheric density nent  when nonlinear observ a t '  ions a re  

c sin 8; 8 = slant range angle 
employed; nleasured velocity when linear ob- 
servations are employed 

g acceleration of gravity 
( P i j )  gain matrix 

K drag parameter, reflecting the ballistic char- 
acteristics of the vehicle as well as the ground (Qi j) weighting matrix, related to the measurements 
level pressure on the planet 

7' radius of the planet 

x, altitude 

x, path angle 

( R i j )  weighting matrix, related to the system equa- 
tions 

Superscripts 

x ,  velocity time derivative 

yl measured altitude A estimated values 

y2 measured body-referenced velocity compo- -- compensated values for Ii; or the transpose of 
nent when nonlinear ohserv a t '  ions are em- matrixes H and F 
ployed; measured path angle when linear 
observations are employed * constant values for the gains 
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